Structuring Causal Tree Models with Continuous Variables
نویسندگان
چکیده
This paper considers the problem of invoking auxiliary, unobservable variables to facilitate the structuring of causal tree models for a given set of continuous variables. Paralleling the treatment of bi-valued variables in [Pearl 1986], we show that if a collection of coupled variables are governed by a joint normal distribution and a tree-structured representation exists, then both the topology and all internal relationships of the tree can be uncovered by observing pairwise dependencies among the observed variables (i.e., the leaves of the tree). Furthermore, the conditions for normally distributed variables are less restrictive than those governing bi-valued variables. The result extends the applications of causal tree models which were found useful in evidential reasoning tasks.
منابع مشابه
Non-impeding noisy-AND tree causal models over multi-valued variables
To specify a Bayesian network (BN), a conditional probability table (CPT), often of an effect conditioned on its n causes, must be assessed for each node. Its complexity is generally exponential in n. Noisy-OR and a number of extensions reduce the complexity to linear, but can only represent reinforcing causal interactions. Non-impeding noisy-AND (NIN-AND) trees are the first causal models that...
متن کاملINFORMATION FUSION, CAUSAL PROBABILISTIC NETWORK AND PROBANET II: Inference Algorithms and Probanet System
As an extension of an overview paper [Pan and McMichael, 1997] on information fusion and Causal Probabilistic Networks (CPN), this paper formalizes kernel algorithms for probabilistic inferences upon CPNs. Information fusion is realized through updating joint probabilities of the variables upon the arrival of new evidences or new hypotheses. Kernel algorithms for some dominant methods of infere...
متن کاملINFORMATION FUSION , CAUSAL PROBABILISTIC NETWORK AND PROBANETII : Inference Algorithms and
As an extension of an overview paper Pan and McMichael, 1997] on information fusion and Causal Probabilistic Networks (CPN), this paper formalizes kernel algorithms for probabilistic inferences upon CPNs. Information fusion is realized through updating joint probabilities of the variables upon the arrival of new evidences or new hypotheses. Kernel algorithms for some dominant methods of inferen...
متن کاملEstimating Mutual Information for Discrete-Continuous Mixtures
Estimating mutual information from observed samples is a basic primitive, useful in several machine learning tasks including correlation mining, information bottleneck clustering, learning a Chow-Liu tree, and conditional independence testing in (causal) graphical models. While mutual information is a well-defined quantity in general probability spaces, existing estimators can only handle two s...
متن کاملCausal Discovery from Databases with Discrete and Continuous Variables
Bayesian Constraint-based Causal Discovery (BCCD) is a state-of-the-art method for robust causal discovery in the presence of latent variables. It combines probabilistic estimation of Bayesian networks over subsets of variables with a causal logic to infer causal statements. Currently BCCD is limited to discrete or Gaussian variables. Most of the real-world data, however, contain a mixture of d...
متن کامل